I have recently had some trouble with Linux. Ubuntu wouldn’t load. I had to run fsck to fix it. I am not sure exactly what the problem was or what caused it. I may have similar problems. I will wait and see.

## More on Linux

September 5, 2016## Upgrade

August 6, 2016I have upgraded from Ubuntu 14.04 to 16.04. It made it easier to install polymake. So I installed it. It looks interesting. So far 16.04 is running smoothly for me.

## Linux

May 28, 2016I am using Linux as my main operating system for the first time. Before I had Chrome, before that Windows 7. It is OK. There are a few odd things like I have to watch Netflix on a Chrome browser and Hulu on Firefox but it is going well. I can run Sage on this computer without an emulator so in that sense it is an improvement over Windows. Also I don’t need antivirus software.

## Happy Holidays

December 29, 2015I have not posted for a while. One thing I think I mentioned a while back is computer problems. That has been dealt with to a degree that it should not be an obstacle to posting. I hope everyone is enjoying the holidays and that they will have a good 2016.

## Kites

September 7, 2015In my previous post “transitive sets” I discussed the idea that instead of all spherical sets being Ramsey, a set is Ramsey if its symmetry group of isometries is transitive. In this post I want to give a simple example of a configuration which is spherical but can’t be embedded into a set which has a transitive symmetry group of isometries.

The example comes from the paper “Transitive sets and cyclic quadrilaterals” by I. Leader,P.A. Russell and Mark Walters. It is here. In corollary 2 of the paper they prove the set $$((-1,0),(1,0),(a,\sqrt{1-a^2},(a,-\sqrt{1-a^2}))$$ where $a$ is transcendental does not embed into any transitive set. This type of set is called a kite.

If you could find a set which satisfies the above properties and prove it is Ramsey that would provide a counterexample to the hypothesis of the first paragraph. In any case this is a good example of a set which is spherical and can’t be embedded into a transitive set. I may continue this series of posts later.

## Transitive sets

June 24, 2015One paper in Euclidean Ramsey theory is “Transitive sets in Euclidean Ramsey theory” by Imre Leader, Paul A. Russell and Mark Walters. A set is transitive if its symmetry group of isometries is transitive. The paper looks at the question what if only transitive sets are Ramsey. It is known that Ramsey sets are spherical and it has been conjectured that all spherical sets are Ramsey. The paper shows that the conjectures are not equivalent that there exist sets that are spherical and cannot be embedded in any transitive set. It also looks at equivalent forms of the statement all transiive sets are Ramsey. It is here. I may talk further about the questions raised in this paper in future posts as there are some other papers written in response to these questions

## Back again

June 9, 2015I have just logged on. I have not posted in over a year. I think a while back I posted about new developments in the field. I might do that again. There are some things that I want to talk about in Euclidean Ramsey theory. I hope to get my next post here faster than the 18 month gap between this post and the last.

## Polymath 5

February 13, 2014There is some news on this problem. There is a paper here.

It finds an example of size 1160 that has value 2 and proves that that example is maximal. The polymath 5 project found an example of size 1124. The proof that 1160 is maximal required a large computer proof. For more information see this post.

## Polymath 8

February 8, 2014There is an uploaded version of 8a. Also there is going to be a article about the experience of working on 8a and possibly 8b for the newsletter of the European Mathematical society. The deadline is around April. For more check this post.

## Polymath 9

January 19, 2014Polymath 9 has answered one of the questions it asked apparently. The idea that was being tried didn’t work there was a counterexample. It could possibly continue if the method could be modified to avoid the counterexample which is here. Meanwhile Polymath 8 has spawned a new project Polymath 8b. this is the latest post of this project.