Radon related problem 8

Let us generalize this problem to r sets and dimension d:

We have r(d+1) -1 points on the plane. We want to show that we can divide them into r-1 sets of d+1 points and one set of d-2 such that the intersection of the convex hulls of all r sets is not empty.

We take (r-1)*(d+1) +1 of the points and apply Tverberg’s theorem.
It gives us r disjoint nonempty sets which together contain all (r-1)*(d+1) +1 points. The intersection of the convex hulls of these sets is nonempty. Let one of the points in the intersection of the convex hulls be x.

If any of the r sets are bigger than d+1 then by Caratheodory’s theorem there is a d+1 subset that contains x. We take that as the new set in place of the old set and add the additional points to sets less than d+1 making sure none of the additions causes a set to be greater than d+1. We repeat this process untill all of the sets are three or less. Then we add the remaining d-1 points to a sets with d points or less again making sure no set goes over d+1. The result is (r)*(d+1) +1 points divided into r sets of d+1 or less. The only way to do this is r-1 sets of d+1 and one set of d points which gives the desired theorem.

We can add more points and keep the distribution even since adding a point to a set of points increases the convex hull so the intersection of convex hulls still contains x. So we have the following if we have r(d+1) -1 points or more we can divide them into r nonempty sets, the size of each set differing by at most one element from each other set such that the intersection of the convex hulls of the sets is nonempty.

Advertisements

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s


%d bloggers like this: